BSC. PART - II EXAMINATION - 2010

MATHEMATICS SUB/GEN

Answer eight questions in all, selecting at least one from each Group in which questions 1 is compulsory

- 1. Select the correct answers from the following
 - (a) The solution of the differential equation $\frac{dy}{dx} = e^{x-y} + x^2e^{-y}$ is

(i) $e^x + e^y = c$ (ii) $e^x = e^y + \frac{y^3}{3} + c$ (iii) $e^y = e^x + \frac{x^3}{3} + c$ (iv) None of these

- (b) The complementary function of $\frac{d^2y}{dx^2} 5\frac{dy}{dx} + 6y = e^{2x}x^3$ is

 (i) $(c_1 + c_2x)e^{2x}$ (ii) $c_1e^{2x} + c_2e^{3x}$ (iii) $(c_1 + c_2x)e^{3x}$ (iv) None of these
- (c) If e be eccentricity of a conic section, then conic section represents a parabola if (i) c > 1(ii) c = 1(iii) c < 1 (iv) None of these
- (d) If I, m, n be the direction cosines of a line, then

(i) 1 + m + n = 0

$$-(ii) l^2 + m^2 + n^2 = 0$$

(iii) $l^2 + m^2 + n^2 = 1$

(iv) None of these

(e) The Cartesian equation of common catenary is

(i) S = C tan W (ii) S = s cos h x/c (iii) S = c sec W (iv) None of these

(f) In simple harmonic motion, frequency n is equal to

http://www.tmbuonline.com

(iii) √//₂=

(iv) None of these

- (g) Every differentiable function
 - (i) must be continuous

- (ii) must not be continuous
- (iii) may or may not be continuous (iv) None of these
- (h) If $u = x^3 + y^3 = 3axy$, then $\frac{\partial u}{\partial y}$ is

(i) $3y^2$ (ii) $3xy + y^3$ (iii) $3y^2 + 3ax$ (iv) None of the above

GROUP-A

Solve any two of the following

(i) $(x+y)^2 \frac{dy}{dx} = a^2$ (ii) $\frac{dy}{dx} = \frac{x+2y-3}{2x+y-3}$ (iii) $x^2y dx - (x^3+y^3) dy = 0$

3. Solve any two of the following

(i) $y = 2px + \frac{a}{p}$ (ii) $\cos^2 x \frac{dy}{dx} + y = \tan x$ (iii) $\frac{dx}{x} - \frac{dy}{y} = dx$

4. Solve any two of the following

(ii) $y = 2px + 4xp^2$ (iii) $y = (1+p)x + p^2$

5. Solve any two of the following

(i) $\frac{d^2y}{dx^2} + y = e^{-x}$ (ii) $\frac{d^2y}{dx^2} - 5\frac{dy}{dx} + 6y = \sin x + \cos x$ (iii) $(D^3 + 2D^2 + D) y = x^2$

GROUP-B

- 6. (a) Find the equation of a parabola in standard form.
 - (b) Find the condition for tangency of the line

y = mn + c to allipse
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

7. Find the equation of the tangent to the curve $ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$

http://www.tmbuonline.com

- 8. (a) Define direction cosines of a line and find the angle between the two line whose direction cosines are (l_1, m_1, n_1) and (l_2, m_2, n_2)
 - (b) Find the equation to the line through the point (1, 2, 3) parallel to the $\sin x y + 2z = 5$, 3x + y + z = 6
- 9. (a) Find the equation of the cone whose vertex is the point (α, β, γ) and guiding curve is the conic

$$z = 0$$
, $f(x, y) = ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$

(b) Find the equation of sphere which passes through origin and makes into cepts a, b, c from coordinate axes

· GROUP-C .

- 10. (a) Find the equation of the line of the resultant of a system of coplanar force acting upon a rigic body.
 - (b) Forces P. Q. R act along the lines x = 0, y = 0 and $x \cos \theta + y \sin \theta = p$. Find the magnitude of the resultant and equation of its lines of action.
- 11. (a) Define common catenary and find intrinsic equation of a common catenary
 - (b) A uniform chain of length 21 has its extremities fastened to two fixed points at the same level and the sag in the middle is h prove that the span is

$$\frac{I^2 - h^2}{h} \log \left(\frac{1+h}{1-h} \right)$$

12. State and explain Hook's law. Prove that the work done against the tension in stretching a light clastic string is equal to the product of its extension and the mean of its initial and final tensions.

OR, prove that the radial acceleration =
$$\frac{d^2r}{dt^2} - r\left(\frac{d\theta}{dt}\right)^2$$
 and the transverse acceleration = $\frac{1}{r} \cdot \frac{d}{dt} \left(r^2 \frac{d\theta}{dt}\right)$

13. A particle of mass m is acted on by a force $m\mu\left(x + \frac{a^4}{x^2}\right)$ towards the origin. If it starts from rest at a distance a from the origin, find the time when it will arrive at the origin.

GROUP - D

14. (a) Prove that a function differentiable at a point must be continuous at that point. (b) Examine the differentiability of f(x) at x = 0, where

$$f(x) = x^2 \sin \frac{1}{x}, x \neq 0$$
$$= 0, x = 0$$

- 15. State and prove Taylor's theorem with Lagrange's form of remainder.
- 16. (a) Examine the continuity of f(x,y) at (0,0) where

$$f(x,y) = \frac{xy}{\sqrt{x^2 + y^2}} (x,y) \neq (0,0) \text{ and } f(0,0) = 0$$
(b) if $u = \sin^{-1} \left(\frac{x^2 + y^2}{x + y} \right)$, then show that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = \tan u$

17. Discuss the necessary and sufficient condition for f(x,y) to have an externe value at (a,b)