BSC. PART - II EXAMINATION - 2013

PHYSICS HONOUSRS PAPER IV

Answer five questions in all, selecting two questions each from Group A and Group B, in which Q. No. 1 is compulsory.

1 Character and an arrange	Alba Callanniana
1. Choose the correct answer of	•
(a) A ballistic galvanometer n	icasures:
(i) Charge (ii) D.C	(iii) A.C. (iv) None of these
th) Time constant of a circuit	containing a connection of Condession
toy time constant of a circuit	containing a capacitance C and resistance R is given
han dis CD dis	<u> </u>
by: (1) CR (11)	$\frac{1}{CR}$ (iii) $\frac{C}{R}$ (iv) $\frac{R}{C}$
	is 60Ω has a reactance of 30Ω . Power factor is:
***	(iii) 0.75 (iv) I
(d) II is is E.M.F. developed in	a thermocouple for wiheir $\sigma = 0$ as one of the metal
the Thomson co-efficient for	or the other metal is given by:
	_ •
(i) $T^2 \frac{dE}{dt}$ (ii) $T^2 \frac{d}{dt}$	E (iii) T dE (iii) T dE
''' dT '''': d	$\frac{^{2}E}{\Gamma_{r}^{2}} (iii) T. \frac{dE}{dT} \qquad (iv) T. \frac{d^{2}E}{dT^{2}}$
(c) Velocity of plane electroma	gnetic wave in vacuum is given by:
• /:	
13 C = 1 1 13 0 1 1	
(i) $C = \sqrt{\mu_0 / \epsilon_0}$ (ii) $C = \sqrt{\mu_0 / \epsilon_0}$	$\mu_0 \varepsilon_0$ (iii) $\frac{1}{\sqrt{\mu_0 \varepsilon_0}}$ (iv) None of these
(DAn Yaray to be appeared at 5	νμοσοί
(1)All A-lay to be operates at 3	000 KV. What is the energy of the most energetic
X-rays photon produced?	
(i) 5000 ev (ii) 5000 l	Mev (iii) 5000 Kev (iv) 500 Kev
(2) The equation of continuity is	electromagnetism is given by:
(E) and equality to	recettoinagnetism is given by:
ϕ $\overrightarrow{\nabla}$ $\overrightarrow{\beta}$ $\overrightarrow{\delta}$	-=0 (iii)
$(1) \times 1 \times \frac{8}{8} = 0 (11) p + \frac{2}{8}$	$-=0$ (iii) $\frac{1}{1-\alpha B}$ (iv) $\nabla \times j + \frac{1}{2} = 0$
(h) The existence of the old	1-05 (
(h) The existence of discrete e	nergy level is shown by:
(1) Stern-Gerlack experiment	(ii) Frank Hartz augarinant
(iii) Thomson experiment	(iv) Bose experiment
(i) Pure rotation spectra of molec	(iv) bose experiment
tive contains a special of molec	nie lies iu:
(i) imra-red region (ii) Far-infr	ared region (iii) Visible region (iv) V-V. region
	C (m) in respect a Blow (m)

http://www.tmbuonline.com

(i) Lorentz Gauge transformation is given by:
(ii)
$$div \phi = \frac{-\partial A}{dt}$$
 (ii) $div \phi = \frac{\partial A}{dt}$ (iii) $Grad \phi = \frac{-\partial A}{dt}$ (iv) None of these GROUP-A

Give an account of photo-electricity and explain its importance in the theoretical physics. Describe the working of photo-voltaic cell.

What is Zeeman effect? Give its theoretical explanation and explain Lande-g-factor. What is an AC Bridge? Describe, with necessary theory, the measurement of induc

tance by Anderson bridge.

5. Define Seeback, Peltier and Thomson effect. Show that $\pi = T \cdot \frac{dE}{dT}$ and

$$\sigma_a - \sigma_b = T \cdot \frac{d^2 E}{dT^2}$$
 using thermodynamics.

GROUP-B

6. State and prove Poynting theorem for an electromagnetic field.

7. Derive e.m. wave equations for electric and magnetic fields in a conduction medium.

Discuss the depth of penetration.

http://www.tmbuonline.com

8. Disuess the motion of a charged particle in a crossed electric and magnetic field. What is velocity Selector?

9. Discuss the theory of rotation vibration spectra of diatomic molecule.