B Sc PART II EXAM 2015

- 1 .(p) State and prove (muchy a mean value theorem
- (b) Find's of the mean value theorem

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$
 if $f(x) = x(x - 1)(x - 2)$, $a = 0$, $b = \frac{1}{2}$

- 4 (a) If $u = \tan^{-1} \frac{x^3 + y^3}{x y}$ then prove that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} \approx \sin 2u$
 - (b) Show that the repeated limits exist at (0, 0) and are equal but the double limit

does not exist of the function
$$f(x,y) = \frac{x^2y^2}{x^2y^2 + (x-y)^2}$$

- 5. (a) Discuss the lagrange's method of undetermined multipliers.
 - (b) In a plane triangle ABC, find maximum value of cos A cos B cos

GROUP-B

- 6. Prove that a monotonic decreasing sequence bounded below tends to a limit which is its greatest lower bound.
 - be Frove that the sequence $\{a_n\}$ where $a_n = \left(1 + \frac{1}{n}\right)^n$ is convergent and its limit lying between 2 and 3.
- lying between 2 and 3.

 7. (a) State and prove Cauchy's condensation test. -23
 - (b) Is the services $\frac{1^2}{2^2} + \frac{1^2 \cdot 3^2}{2^2 \cdot 4^2} + \frac{1^2 \cdot 3^2 \cdot 5^2}{2^2 \cdot 4^2 \cdot 6^2} + \dots$ convergent or divergent?
- 8. (a) State and prove Leibnitz theorem on alternating series.
 - (b) Test for absolute convergence of the series $1 \frac{1}{3} + \frac{1}{5} + \frac{1}{7} + \dots$
- 9. (a) Show that $B(\ell,m) = \frac{\Gamma(\ell)\Gamma(m)}{\Gamma(\ell+m)}$

Evaluate
$$\iint_{0}^{1} \int_{0}^{1} e^{x+y+z} dx dy dz$$

GROUP-C

- 10. (a) Show that a system of coplaner forces acting in one plane at different points of a rigid body can be reduced to single force through any given point and a single couple.
- Three forces P, Q, R act along the sides of a triangle formed by the lines x + y = 1, y x = 1, y = 2. Find the magnitude and equation of line of action of resultant.
- 11. (a) Explain the forces which may be omitted in forming the equation of virtual work of a system of coplaner forces acting at different points of a rigid body.

- Two equal uniform rods AB and AC, each of length 2b are freely jointed at A and rest on a smooth vertical circle of radius a. If 20 be the angle between them, prove that $b \sin^3 \theta = a \cos \theta$.
- (a) Find Cartesian equation of a common Catenary.
 - (b) If tension at point A of Catenary is n times at the vertex, then the span of Catenary

ACB is
$$\frac{2\ell}{\sqrt{n^2-1}} \log \left(n + \sqrt{n^2-1} \right)$$
, when 2ℓ is the length of the Catenary.

- (a) Find the equation of the central axis of a system of forces acting on a rigid body.
 - (b) Find the condition that the straight line $\frac{x-f}{\ell} = \frac{y-g}{m} = \frac{z-h}{n}$ may be a null

http://www.tmbuonline.com Whatsapp @ 9300930012 Send your old paper & get 10/-अपने पुराने पेपर्स भेजे और 10 रुपये पार्ये, Paytm or Google Pay से