AA(H-3) -- M (8)

2020

Time: 3 hours

Full Marks 100

Candidates are required to give their answers in their own words as far as practicable.

Q. No. 1 carries 20 marks and remaining questions carry 16 marks each.

Answer six questions, selecting at least two from each Group in which Q. No. 1 is compulsory.

- Select the correct answer from the choices given in each of the following:
 - (a) If m is the mass of the particle and its acceleration is f then mf is called.
 - (i) Effective force

http://www.tmbuonline.com

http://www.tmbuonline.com

http://www.tmbuonline.com

- (ii) Impressed force
- (iii) External force
- (iv) None of these
- (b) If m be the mass of an element of a rigid body and r the distance of this element from a given line then Σmr² is:
 - The moment of inertia of the body about the given line
 - (ii) The moment of inertia of the body about the given axis
 - (iii) The moment of inertia of the body about the centre
 - (iv) None of these
- (c) The Lagrange's equations for a conservative holonomic dynamical system is:

(i)
$$\frac{d}{dt} \left(\frac{\partial T}{\partial \dot{\theta}} \right) - \frac{\partial}{\partial \theta} (T - V) = 0$$

BX - 7/4

(2)

Contd.

http://www.tmbuonline.com

BX -- 7/4

http://www.tmbuonline.com

(Tum over)

http://www.tmbuonline.com

(ii)
$$\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{\theta}} \right) - \frac{\partial L}{\partial \dot{\theta}} \approx 0$$

(iii)
$$\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{\theta}} \right) - \frac{\partial T}{\partial \theta} = 0$$

- (iv) None of these
- (d) The effective force on a particle is defined as the product of its mass m and its acceleration f. If a particle of mass m is situated at the point (x, y, z) at time t then the effective forces on this particle at this time t are:
 - (i) $m\frac{d^2x}{dt^2}$, $m\frac{d^2y}{dt^2}$ and $m\frac{d^2z}{dt^2}$ parallel to

the axis

(3)BX - 7/4

(Turn over)

http://www.tmbuonline.com

http://www.tmbuonline.com

http://www.tmbuonline.com

(ii)
$$m \frac{d^2x}{dt^2}$$
, $m \frac{d^2y}{dt^2}$ and $m \frac{d^2z}{dt^2}$ parallel to the line

- (iii) $m \frac{d^2x}{dt^2}$, $m \frac{d^2y}{dt^2}$ and $m \frac{d^2z}{dt^2}$ parallel to the product of its mass
- (iv) None of these
- (e) The depth of the centre of pressure of a plane area immersed in a liquid is _____ than / to the depth of the C. G.
 - Less
 - Equal and greater
 - (iii) Equal
 - (iy) Greater
- (f) Charle's law does not apply to :
 - (i) Vapour

BX - 7/4

(4)

Contd.

http://www.tmbuonline.com

http://www.tmbuonline.com

- (ii) Gas
- (iii) Mixture of the gases
- (iv) None of these
- (g) The volume of a given mass of a gas under the same pressure varies directly as its:
 - Absolute pressure
 - Absolute temperature and pressure
 - (iii) Density
 - (iv) None of these
- (h) If p_1 , ρ_1 , t_1 ; p_2 , ρ_2 , t_2 ; p_3 , ρ_3 , t_3 be the corresponding values of the pressure. density and temperature of the same gas, then $\rho_1 t_1 (\rho_3 p_2 - \rho_2 p_3) +$ $\rho_2 t_2 (\rho_1 p_3 - p_1 \rho_3) + \rho_3 t_3 (\rho_2 p_1 - \rho_1 p_2) = K$ where K is:
 - Greater than zero
 - Less than zero

BX - 7/4 (5)

(Turn over)

(iii) Equal to zero

(iv) None of these

Group - A

- Find the moment of inertia of an ellipsoid about the axis 2a.
 - (b) If α , β and γ be the distances of the vertices of a triangle of mass m from any straight line in its plane, show that the moment of inertia of the triangle about this line is

$$\frac{m}{6} \Big[\alpha^2 + \beta^2 + \gamma^2 + \beta \gamma + \gamma \alpha + \alpha \beta \Big]. \text{ Hence}$$

deduce that if h be the distance of the centre of inertia of the triangle from the line, then moment of intertia about this line is

$$\frac{m}{12} \left[\alpha^2 + \beta^2 + \gamma^2 + 9h^2 \right].$$

3. (a) Deduce the general equation of motion of a rigid body from D'Alembert's principle.

BX - 7/4

(6)

Contd.

http://www.tmbuonline.com

http://www.tmbuonline.com

http://www.tmbuonline.com

http://www.tmbuonline.com

- (a) Find the moment of momentum about the origin of a rigid body moving in two dimensions.
 - (b) Find the equation of motion of rigid body under finite forces.
- (a) State and prove the principle of conservation of linear momentum of rigid body under finite forces.
 - (b) An elliptic lamina is rotating about its centre on smooth horizontal table.

If W₁, W₂ W₃ are its angular velocities when the extrimity of its major axis, its focus and the extrimity of its minor axis respectively become fixed. Prove that

$$\frac{7}{W_1}=\frac{6}{W_2}+\frac{5}{W_3}.$$

http://www.tmbuonline.com

http://www.tmbuonline.com

What do you mean by holonomic system? State and prove Lagrange's equation of motion for a holonomic system.

Group - B

- (a) Prove that the depth of the centre of pressure of a plane immersed in a liquid is greater than the depth of its centre of gravity.
 - (b) A triangle is wholly immersed in a liquid with its base in the surface. Show how to draw a horizontal line to divide it into two parts, the thrust on which are equal.

BX - 7/4

(Turn over) http://www.tmbuonline.com

http://www.tmbuonline.com

http://www.tmbuonline.com

Contd.

BX - 7/4

- (b) A portion of a sphere cut off by two planes through its centre inclined at angle π/4 is just immersed in a liquid with one face in the surface. Find the resultant thrust on the curved surface.
- (a) Find the necessary and sufficient conditions for equilibrium of a fluid under the action of forces whose components are X, Y and Z along coordinate axis.
 - (b) A quadrant of circle is immersed in a liquid with a bounding radius in the surface, find the position of centre of pressure.
- 10. (a) Find the condition of equilibrium of a body partially or wholly immersed in a liquid and

supported by a string attached to a point of body.

(b) Two solids are each weighed in succession in three homogeneous liquid of different densities if the weights of one are w_1 , w_2 , w_3 and those of other are W_1 , W_2 and W_3 , prove that w_1 ($W_2 - W_3$) + w_2 ($W_3 - W_1$) + w_3 ($W_1 - W_2$) = 0.

- 11. (a) Find a relation among Pressure, Volume and Absolute temperature of a gas.
 - (b) Assuming the height of water barometer to be h, find to what depth a small inverted conical glass must be lowered so that the water may rise half up.
- 12. (a) Find the relation between pressure and volume in adiabatic change.

(9) (Tum over)

BX - 7/4

http://www.tmbuonline.com

http://www.tmbuonline.com

(10)

Contd.

http://www.tmbuonline.com

http://www.tmbuonline.com

(b) If p₁, d₁, t₁; p₂, d₂, t₂ and p₃, d₃, t₃ are three corresponding pressures, densities and absolute temperatures of a perfect gas then prove that:

$$t_1 \left(\frac{p_2}{d_2} - \frac{p_3}{d_3} \right) + t_2 \left(\frac{p_3}{d_3} - \frac{p_1}{d_1} \right) + t_3 \left(\frac{p_1}{d_1} - \frac{p_2}{d_2} \right) = 0$$

http://www.tmbuonline.com

http://www.tmbuonline.com Whatsapp @ 9300930012 Send your old paper & get 10/-अपने पुराने पेपर्स भेजे और 10 रुपये पार्य, Paytm or Google Pay से