AA(H-3) --- M (6)

(Turn over)

2020

Time: 3 hours

Full Marks: 100

Candidates are required to give their answers in their own words as far as practicable.

Q. No. 1 carries 20 marks and the remaining questions carry 16 marks each.

Answer six questions in all, selecting atleast one from each Group, in which Q. No. 1 is compulsory.

- Choose the correct answer of the following questions:
 - (a) The order of the group S₄(symmetric group) is:
 - (i) 12
 - (ii) 18
 - (iii) 24
 - (iv) None of these

http://www.tmbuonline.com

http://www.tmbuonline.com

- (b) The homomorphic image of an abelian group is:
 - Abelian
 - Non-abelian
 - (iii) Isomorphic
 - (iv) None of these
 - Every cyclic group of a quotient group is:
 - Cyclic
 - Not cyclic
 - (iii) Normal group
 - (iv) None of these
 - (d) A homomorphism of a Group G to itself is called:
 - A monomorphism
 - (ii) An epimorphism
 - (iii) An endomorphism
 - (iv) None of these
 - The ring of all complex numbers is:
 - Non commutative ring
 - Field (ii)

BX - 5/6

(2)

Contd.

http://www.tmbuonline.com

http://www.tmbuonline.com

- (iii) Both (i) and (ii)
- (iv) None of these
- The necessary and sufficient condition that the non-zero element 'a' in the Euclidean ring R is a unit, is that:
 - $d(a) \ge d(1)$
 - (ii) $d(a) \le d(1)$
 - (iii) d(a) = d(1)
 - (iv) $d(a) \neq d(1)$
- (g) A set of vectors which contains the zero vector is:
 - Linearly dependent
 - Linearly independent
 - (iii) Both (i) and (ii)
 - (iv) None of these
- The dimension of a vector space V of all 2 × 2 symmetric matrices over the field F of real numbers is:
 - (i)

http://www.tmbuonline.com

- (ii) 3
- (iii) **4**

BX - 5/6

(iv) None of these

(Tum over) (3

http://www.tmbuonline.com

(a) Define normalizer of an element of a group and prove that normalizer N(a) of a in a group G is a subgroup of G.

Give an example to show that in a group G the normalizer of an element is not necessarily a normal subgroup of G.

3. (a) If G is a group such that O(G) = Pⁿ where P is a prime number then show that the order of centre z > 1.

Let G be a group, f an automorphism of G and N a normal subgroup of G then prove that f(N) is a normal subgroup of G.

(a) Prove that subgroup of a solvable group is solvable.

Show that a group G is solvable if and only if $G^{(k)} = \{e\}$ for some integer k.

State and prove Cauchy's theorem for finite abelian group.

BX - 5/6

http://www.tmbuonline.com

http://www.tmbuonline.com

(4)

Contd.

http://www.tmbuonline.com

- State and prove fundamental theorem on homomorphism of rings.
 - Show that the polynomial ring R(x) is an integral domain if R is an integral domain.
- 7. Define skew field and show that skew field has non divisors of zero.
 - (b) Prove that a field has no proper ideal.
- (a) Prove that the ring of polynomials over a field is a Euclidean ring.

http://www.tmbuonline.com

- (b) Define Ring Isomorphism. Give an example of it.
- Show that every abelian group G is a module over the ring of integers.
 - (b) If A and B are two submodules of an R-module M, then prove that $A \cap B$ is also a submodule of M.

(5)(Tum over) BX - 5/6

http://www.tmbuonline.com

http://www.tmbuonline.com

Group - C

- 10. (a) Define vector space. Prove that the necessary and sufficient condition for a non-empty subset w of a vector space V(F) to be a subspace of V is a, b ∈ F and $\alpha, \beta \in W \Rightarrow a\alpha + b\beta \in W$.
 - (b) If w₁ and w₂ be two subspaces of a finite dimensional vector space V(F) then prove that:

$$\dim(w_1 + w_2) + \dim(w_1 \cap w_2) = \dim w_1 + \dim w_2$$

- 11. (a) If V(F) is a finite dimensional vector space then prove that any two bases of V have the same number of elements.
 - (b) Prove that there exists a basis for each finite dimensional vector space.
- 12. Define rank and nullity of a linear transformation. Also state and prove rank and nullity theorem for linear transformation.

BX - 5/6

(6)

Contd.

http://www.tmbuonline.com

- (a) Show that a linear transformation T on a finite dimensional vector space V is an isomorphism iff it is non-singular.
 - (b) Show that the mapping T: V₃(R) → V₂(R) defined as T(x, y, z) = (3x-2y+z, x-3y-2z) is a linear transformation.

http://www.tmbuonline.com Whatsapp @ 9300930012 Send your old paper & get 10/-अपने पुराने पेपर्स भजे और 10 रुपये पार्य, Paytm or Google Pay से

BX - 5/6 (2,000) (7) AA(H-3) - M(6)