AA(H-2)-Math(3)

2020

Time: 3 Hrs Full Marks: 100

Candidates are required to give their answers in their own words as far as practicable.

Q.No. 1 carries 20 marks and remaining questions carry 16 marks each.

Answer six questions in all, selecting at least one from each group in which Q.No.1 is compulsory.

- 1. Choose the correct answer of the following:
 - (a) For the existence of limit of any function at any point, the function
 - (i) May be or may not be defined at the point
 - (ii) Must be defined at that point.
 - Never be defined at that point.
 - (iv) None of these
 - (b) Any sequence of irrational numbers may be convergent
 - (i) to a rational point
 - (ii) to an irrational point
 - both of (i) & (ii)
 - (iv) None of these
 - (c) Lagrange's Mean value theorem is a particular case of

P.T.O.

https://www.tmbuonline.com

https://www.tmbuonline.com

- (i) Taylor's theorem
- (iii) Cauchy-Mean Value theorem
- (iii) Darboux's theorem
- (iv) None of these
- (d) If $(x,y) \rightarrow (a,b) = \ell(exists)$, $x \rightarrow a$ exists for each constant value of y in the $\frac{nhd}{x}$ of y=b and $y \rightarrow b$ exists for each constant value of x in the neighbourhood of x=a then $x \rightarrow a \quad y \rightarrow b$ $x \rightarrow a$

is the statement of

- (i) Double limit theorem
- (ii) Repeated limit theorem
- √iii) Moore-Osgood theorem
- (iv) Existence of limit theorem
- (e) Beta function $B(m,n) = \int_{0}^{1} x^{m-1} (1-x)^{n-1} dx$ is defined for
 - (i) m>1 and n>1
 - (ii) m>0 & n>0
 - (iii) $m \le \theta$, $n \le \theta$
 - (iv) m<0 & n>0
- (f) The value of $\int_{0}^{1} \int_{0}^{1} \frac{1}{(1+x^2)(1+y^2)} dxdy$ is equal to

AA(H-2)-Math(3)

- 2

https://www.tmbuonline.com

- π^2
- $\frac{\pi^2}{4}$
- (iii) $\frac{\pi^2}{8}$
- (iv) $\frac{\pi^2}{16}$
- (g) If the algebraic sum of the moments of the system of coplanar forces about a point vanishes then the resultant of the system of forces
 - (i) passes through the point
 - (ii) does not pass through the point
 - (iii) May or may not pass through the point
 - (iv) None of these
- (h) The string of the common catenary is
 - (i) inextensible
 - (ii) perfectly flexible
 - (iii) perfectly flexible and inextensible
 - (iv) flexible and inextensible

Group-A

 (a) If any function f(x) is continuous is [a,b] then it attains its founds at least once in [a,b]. Prove it.

AA(H-2)-Math(3)

P.T.O.

https://www.tmbuonline.com

https://www.tmbuonline.com

(b) If f(x) is defined on]0,1[by f(x) = 0, when x is irrational

 $f(x) = \frac{1}{q}$ when $x = \frac{p}{q}$ a rational for $p, q \in N$ in their lowest term, then show that f is continuous for each irrational point and discontinuous at each rational point in [0, 1].

- (a) State and prove Rolle's theorem.
 - (b) If f(x+h) admits of Taylor's expansion with Lagrange's form of remainder after n terms viz $Rn = \frac{h^n}{\lfloor n \rfloor} f^n(a+Qh)$ and $f^{n+1}(x)$ is continuous in a neighbourhood of x containing x+h and $f^{n+1}(x) \neq 0$, show that $Q \to \frac{1}{n+1}$ as $h \to 0$.
- 4 (a) Discuss the criteria for determination of maxima or minima of a function of two variables.
 - (b) Find the maxima and minima of the function $x^3 + y^3 3axy, x \ne 0, y \ne 0$.
- (a) State and prove Euler's theorem for the homogeneous function of two variables.
 - (b) Using $\in -\delta$ definition of continuity examine the continuity of f(x, y) at (0,0) when $f(x, y) = \frac{xy(x^2 y^2)}{(x^2 + y^2)}$ when $(x, y) \neq (0,0) \& f(0,0) = 0$.

https://www.tmbuonline.com

Group-B

(a) State and prove the Cauchy's general principle of convergence of a sequence.

(b) If $a_1 < a_2$ are arbitrary real numbers and $x_n = \frac{1}{2}(x_{n-2} + x_{n-1})$ for n>2, show that $\{x_n\}$ is convergent and find $p \to \infty$.

7 (a) State and prove Cauchy's condensation test.

(b) Examine the convergence of the series

$$1 + \frac{1}{2} \cdot \frac{x^2}{4} + \frac{1.3.5}{2.4.6} \cdot \frac{x^4}{8} + \frac{1.3.5.7.9}{2.4.6.8.10} \cdot \frac{x^6}{12} + \dots$$

8. (a) State and prove Leibnitz's theorem for an alternating series.

(b) Test the convergency of $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^p}$.

9. (a) Express $\int_{0}^{\pi_{i}} \cos^{m}\theta \sin^{n}\theta d\theta$ in terms of Gamma function.

(b) Evaluate $\iiint_{D} (x^2 + x^2) dx dy dz$ where $D = \frac{x^2}{c^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} \le 1$

P.T.O. 5 AA(H-2)-Math(3)

https://www.tmbuonline.com

https://www.tmbuonline.com

Group-C

30. (a) To find the equation of the line of action of the resultant of a system of coplanar forces acting at different points of a rigid body.

(b) A solid cone of height h and Semi-vertical angle α is placed with its base against a smooth vertical wall and is supported by a string attached to its vertex and to a point in the wall. Show that the greatest possible length of the

string is
$$h\sqrt{1+\frac{16}{9}tan^2\alpha}$$

11. (a) State and prove the principle of virtual work for system of coplanar forces acting on different points of a rigid body.

(b) A heavy elastic string whose natural length is $2\pi a$ placed round a smooth cone whose axis is vertical and whosesemi vertical angle is α . If ω be the weight and λ the modulus of elasticity of the string, prove that it will be in equilibrium when in the form of the circle whose radius is

$$a\left(1+\frac{\omega}{2\pi\lambda}\cos\alpha\right).$$

12. (a) For a catenary with parameter C, prove that Hvat. $x = c \log(Sec \Psi + tan \Psi)$, where Ψ is the angle of tangency of the catenary at (x, y).

https://www.tmbuonline.com

(b) Prove that the length of a heavy endless chain which will hang over a circular pulley of Radius a so as to be in contact with two-third of circumference is $a\left(\frac{4\uparrow}{3} + \frac{3}{\log(2+\sqrt{3})}\right).$

- 13. (a) To prove that for a system in equilibrium under conservative forces, the potential energy is minimum for stable and maximum for unstable equilibrium.
 - (b) To determine the condition in order that a given system of forcess should compound into a single force.
